852. Molecular Polarisability. The Conformations of 1,4- and 1,5-Dimethoxynaphthalene and 9-Methoxy- and 9,10-Dimethoxy-anthracene as Solutes in Benzene.
By R. J. W. Le Fèvre, (Mrs.) A. Sundaram, and K. M. S. Sundaram.
Molar Kerr constants for the compounds in the title are recorded. High and low positive values for 1,4 - and 1,5-dimethoxynaphthalene, respectively, are reconcilable with conformations (I) and (II), in which the $\mathrm{C}-\mathrm{O}-\mathrm{Me}$ triangles may be variously rotated about their $\mathrm{C}-\mathrm{O}$ bonds by angles probably not exceeding $\pm 30^{\circ}$. A large negative ${ }_{\mathrm{m}} K$ for 9,10 -dimethoxyanthracene indicates the presence of the cis-orthogonal isomer (III), as deduced from dipole-moment data by Everard and Sutton. For 9 -methoxyanthracene the calculated and observed ${ }_{\mathrm{m}} K$ values are equal if the methoxyl is out-of-plane by $\pm 30^{\circ}$.

With a knowledge of the anisotropic polarisabilities of the $\mathrm{C}-\mathrm{O}$ bond ${ }^{1}$ and of the naphthalene ${ }^{2}$ or anthracene ${ }^{3}$ molecule it seemed likely that information on the apparent conformations adopted by the compounds in the title as solutes in benzene could be obtained by measuring their molar Kerr constants ${ }^{4}$ in this medium.

Experimental

Solutes.-1,4-Dimethoxynaphthalene had m. p. $87-88^{\circ}$ (from ethanol) (lit., ${ }^{5} 86-87.5^{\circ}$); 1,5-dimethoxynaphthalene had m. p. 183-184 (from ethanol), as in ref. 6; 9,10-dimethoxyanthracene, purified and stored as noted by Everard and Sutton, ${ }^{7 a}$ had m. p. 202° (lit., ${ }^{8} 202^{\circ}$); 9 -methoxyanthracene had m. p. $97-98^{\circ}$ (from ethanol), as in ref. 9. Preparative details were as given in refs. 5, 6, 8, and 9 , respectively.

Table 1.
Incremental values of Kerr constants for solutions in benzene at 25°.

Observations and Results.-Table 1 records, as ΔB or Δn, the differences between the Kerr constants or refractive indices of solutions and solvent (for benzene at 25° and with D -light, $B=0.410 \times 10^{-7}$, and $n=1 \cdot 4973$); concentrations are expressed as weight-fractions, w_{2}, of solute. By combination of these data with dielectric polarisation and other information from

[^0]Table 2.
Molar Kerr constants at infinite dilution, apparent dipole moments, etc., of solutes in benzene at 25°.

Solute	$\alpha \varepsilon_{1}$	β	$\underset{\text { (c.c.) }}{\infty}$	$\underset{\text { (c.c.) }}{R_{\mathrm{D}} \text { (obs.) }}$	μ (D) *	γ	δ	$10^{12}{ }_{\infty}\left({ }_{m} K_{2}\right)$
1,4-Dimethoxynaphthalene	$2 \cdot 83{ }^{\text {a }}$ a	$0 \cdot 2416^{\text {a }}$	$146 \cdot{ }^{\text {a }}$	$57.2{ }^{\text {a }}$	$2 \cdot 09$ a	$0 \cdot 060{ }^{\text {d }}$	21.6	298.3
1,5-Dimethoxynaphthalene	$0 \cdot 49{ }^{\text {a }}$ a	$0 \cdot 2485{ }^{\text {a }}$	$68.9{ }^{\text {a }}$	$59 \cdot 8{ }^{\text {a }}$	$0 \cdot 67 a$	$0.065{ }^{\text {d }}$	$2 \cdot 43$	$41 \cdot 0$
9 -Methoxyanthracene	$1.36{ }_{5}{ }^{\text {b }}$	$0.2781{ }^{\text {b }}$	$105 \cdot 1^{\text {b }}$	$73 \cdot 4$	$1 \cdot 24{ }_{5}$	$0 \cdot 129$	$2 \cdot 24{ }_{4}$	$34 \cdot 3$
9,10-Dimethoxyanthracene	$1.81{ }_{5}{ }^{\text {c }}$	$0.3111^{\text {c }}$	$1411^{\text {c }}$	$79.8{ }^{\text {c }}$	$1.73{ }^{\text {c }}$	$0 \cdot 103$ *	$-10 \cdot 20^{4}$	$-189 \cdot 0$
* Calculated by taking ${ }_{\mathrm{D}} P=R_{\mathrm{D}}$.								

refs. 7 and 10 , the results in Table 2 are obtained via the equations summarised in $J ., 1962$, 1494, and explained, together with their associated experimental techniques, in ref. 4.

Discussion

Everard and Sutton ${ }^{7}$ explained the differing polarities of 1,4- and 1,5-dimethoxynaphthalene and 9,10 -dimethoxyanthracene by the reasonable suggestion that in these cases conformations are mainly decided by resonance effects, which require the methoxyls to be in the ring-planes, and by steric interferences of peri-H-atoms with methyl groups, which prevent attainment of coplanarity in dimethoxyanthracene and permit it for only one of the three extremes foreseeable for each dimethoxynaphthalene. Formulæ (I)-(III)

$$
\dot{L}^{Y} x
$$

were therefore written for equilibrium structures; in (III) the methoxyls were thought to be in the orthogonal plane and to lie equally cis and trans to one another (thus accounting for an observed dipole moment equal to that of quinol dimethyl ether).

Present measurements are reconcilable with such ideas. Qualitatively, high and low positive molar Kerr constants, respectively, are to be expected for flat conformations as (I) and (II), while the negative ${ }_{\mathrm{m}} K$ observed for 9,10 -dimethoxyanthracene cannot be understood unless at least some non-planarity is assumed. Attempts to approach the matter quantitatively are summarised in Table 3, the calculations in which are based on the following data: $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles in naphthalene and anthracene $120^{\circ}, \mathrm{C}-\mathrm{O}-\mathrm{C}$ angles 110°; polarisability semi-axes for naphthalene, ${ }^{2} b_{1}=2 \cdot 15, b_{2}=1 \cdot 76, b_{3}=1 \cdot 03$, for anthracene, ${ }^{3} b_{1}=3 \cdot 39, b_{2}=2 \cdot 92, b_{3}=1 \cdot 29$, and for the C-O bond, ${ }^{1} b_{\mathrm{L}}=0.089, b_{\mathrm{T}}=$ 0.046 (all polarisabilities are quoted in 10^{-23} c.c. units); $b_{\mathrm{L}}^{\mathrm{OH}}=b_{\mathrm{T}}^{\mathrm{OH}}=b_{\mathrm{V}}^{\mathrm{OH}}=0.064$, and $\mu_{0-0}=1.1 \mathrm{D}$. The calculated moment of 9 -methoxyanthracene is therefore $1 \cdot 2_{5} \mathrm{D}$ and of flat cis-modifications of 1,4 -dimethoxynaphthalene and 9,10 -dimethoxyanthracene, 2.07 D (the higher value, 2.45 D , used in ref. $7 a$ was computed as $\sqrt{2} \mu_{\text {quinol dimethyl ether }}$). The reference axes are located as indicated alongside (III), with X and Y in the Ar-plane, and Y parallel to the $\mathrm{O} \cdots \mathrm{O}$ line.

Implications of Table 3 are that none of the four solutes adopts a conformation which is either completely planar or has its methoxyl groups held completely orthogonally. Leybold models demonstrate (as did the scale drawings of Everard and Sutton ${ }^{7}$) that, although flat forms are impossible in certain cases, a limited amount of rotation (or
${ }^{10}$ Angyal and Le Fèvre, $J ., 1950,562$.
vibration) of the $\mathrm{C}-\mathrm{O}-\mathrm{Me}$ triangles might occur about the $\mathrm{C}-\mathrm{O}$ bonds. Thus, with $1,5-\mathrm{di}-$ methoxynaphthalene, a slight non-planarity would produce a non-zero μ_{3} and bring ${ }_{\mathrm{m}} K$ calc. near to that observed (e.g., with $\mu_{3}=0.37 \mathrm{D},{ }_{\mathrm{m}} K$ calc. is 40.9×10^{-12}); such a value for μ is possible within the accuracy of present measurement). For 9 -methoxyanthracene we include details of a conformation (A) in which the $\mathrm{C}-\mathrm{O}-\mathrm{Me}$ is 30° out-ofplane and for which the ${ }_{\mathrm{m}} K$ calc. is close to the found value; for comparison the corresponding angle in anisole has been given ${ }^{11}$ as $c a$. 18°. The positive ${ }_{\mathrm{m}} K$ determined for

Table 3.
Calculations of polarisability semi-axes, moment components, and molar
Kerr constants.

Principal semiaxes	Directi X	$\begin{gathered} \text { on cosines } \\ Y \end{gathered}$		Moment components (D)	$\begin{aligned} & 10^{12}{ }_{\mathrm{m}} K \\ & \text { (calc.) } \end{aligned}$	Principal semiaxes	Direct X	cosines Y		Moment components (D)	$10^{12}{ }_{\mathrm{m}} \mathrm{~K}$ (calc.)
9-Methoxyanthracene, planar						9,10-Dimethoxyanthracene, planar, cis					
$b_{1} 3 \cdot 6.5{ }_{2}$	ca. 1	ca. 0	0	$\mu_{1} 1.21$		$b_{1} 3 \cdot 91{ }_{0}$	1	0	0	$\mu_{1} 2.07$	
$b_{2} 3 \cdot 190$	ca. 0	ca. 1	0	$\mu_{2} 0 \cdot 30$	$+407$	$b_{2} 3 \cdot 459$	0	1	0	$\mu_{2} 0$	+821
$b_{3} 1.5 l_{0}$	0	0	1	$\mu_{3} 0$		$b_{3} 1 \cdot 730$	0	0	1	$\mu_{3} 0$	
orthogonal						planar, trans					
$b_{1} 3.6 l_{4}$	1	0	0	$\mu_{1} 0$		$b_{1} 3.91{ }_{2}$	0.9978	0.0663	0	$\mu_{1} 0$	
$b_{2} 3 \cdot 191$	0	ca. 1	ca. 0	$\mu_{2} 0 \cdot 30$	-115	$b_{2} 3 \cdot 45_{7}$	-0.0663	0.9978	0	$\mu_{2} 0$	+199
$b_{3} 1 \cdot 54_{8}$	0	ca. 0	ca. 1	$\mu_{3} 1 \cdot 21$		$b_{3} 1 \cdot 730$	0	0	1	$\mu_{3} 0$	
form A						orthogonal, cis					
$b_{1} 3 \cdot 639$	0.9998	$0 \cdot 0094$	0.0174	$\mu_{1} 0.63$		$b_{1} 3 \cdot 83_{4}$	1	0	0	$\mu_{1} 0$	
$b_{2} 3 \cdot 191$	-0.0062	0.9990	0.0435	$\mu_{2} 0.34$	$+33 \cdot 1$	$b_{2} 3 \cdot 45$	0	1	0	$\mu_{2} 0$	-696
$b_{3} 1.52_{3}$	-0.0200	-0.0429	0.9989	$\mu_{3} 1 \cdot 02$		$b_{3} 1 \cdot 80{ }_{6}$	0	0	1	$\mu_{3} 2 \cdot 07$	
1,4-Dimethoxynaphthalene, planar, cis						orthogonal, trans					
$b_{1} 2 \cdot 66_{6}$	1	0	0	$\mu_{1} 2.07$		$b_{1} 3 \cdot 83{ }_{4}$	1	0 0.9997	0 0.0227	$\mu_{1} 0$	
$b_{2} 2 \cdot 29{ }_{6}$	0	1	0	$\mu_{2} 0$	$+427$	$b_{2} \mathbf{3} \cdot 46_{0}$ $b_{3} 1 \cdot 80$	0	0.9997 -0.0227	0.0227 0.9997	$\mu 2$ μ_{2} 0	+175
$b_{3} 1 \cdot 47_{0}$	0	0	1	$\mu_{3} 0$		$b_{3} 1 \cdot 80{ }_{5}$	0	-0.0227	$0 \cdot 9997$	$\mu_{3} 0$	
planar, trans						form C					
$b_{1} 2 \cdot 66_{8}$	0.9974	0.0715	0	$\mu_{1} 0$		$b_{1} 3.843$	0.9999 0	0	0.0140	$\begin{array}{ll}\mu_{1} & 0.74 \\ \mu_{2} & 0\end{array}$	
$b_{2} 2 \cdot 294$	-0.0715	0.9974	0	$\mu_{2} 0$	$+56.3$	$b_{2} 3.459$ $b_{3} 1.797$	$\begin{gathered} 0 \\ -0.0140 \end{gathered}$	$\begin{aligned} & \mathbf{1} \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 0.9999 \end{gathered}$	$\mu_{2} 0$	-520
$b_{3} 1.470$	0	0	1	$\mu_{3} 0$		form D					
orthogonal, cis											
$\begin{array}{ll}b_{1} 2 \cdot 59 \\ b_{2} & 2 \cdot 29 \\ 0\end{array}$	1			$\begin{array}{ll}\mu_{1} & 0 \\ \mu_{2} & 0\end{array}$		$b_{1} 3.844$ b_{2} 3	0.9999 -0.0042	$\begin{aligned} & 0.0033 \\ & 0.9999 \end{aligned}$	0.0029	$\begin{array}{ll}\mu_{1} & 0 \\ \mu_{2} & 0\end{array}$	+178
$\begin{array}{ll}b_{2} & 2 \cdot 29 \\ b_{3} & 1.54 \\ 6\end{array}$	0	1	0 1	$\mu_{2} 0$ $\mu_{3} 2 \cdot 07$	-381	$b_{3} 1.796$	-0.0138	-0.0035	0.9999	$\mu_{3} 0$	
orthogonal, trans						form E					
$b_{1} 2 \cdot 59{ }_{0}$	1	0	0			$b_{1} 3.845$	0.9974	0.0715		$\mu_{1} 0$	
$b_{2} 2 \cdot 298$	0	0.9968	0.0802	$\begin{array}{ll}\mu_{1} & 0 \\ \mu_{2} & 0\end{array}$	$+43 \cdot 7$	$b_{2} \mathbf{3 . 4 5 7}$	-0.0715	0.9974	0	$\mu_{2}{ }^{0}$	-601
$b_{3} 1.54{ }_{4}$	0	$\begin{array}{r} -0.0802 \\ \text { form } \end{array}$	$\begin{aligned} & 0.9968 \\ & \mathrm{~B} \end{aligned}$	$\mu_{3} 0$		form F					
$b_{1} \mathbf{2 . 6 4} 8$	0.9999	0	0.0140			$b_{1} 3.843$	1	${ }_{0}^{0}$	0	$\mu_{1}{ }^{0.71}$	
	0	1	0 0	$\mu_{2} 0$	$+216$	$b_{2} \mathbf{3} \cdot \mathbf{4 6 0}$ $b_{3} \cdot 796$	0 0	0.9997 -0.0244	0.0244 0.9997	$\mu_{2} 0$	$+245$
$b_{3} 1.48{ }^{6}$	-0.0140	0	0.9999	$\begin{array}{ll}\mu_{3} & 1.01\end{array}$		$b_{3} 1 \cdot 796$	0	-0.0244	$0 \cdot 9997$	$\mu_{3} 0$	
1,5-Dimethoxynaphthalene, planar, trans											
$b_{1} 2 \cdot 66{ }_{8}$	0.9974	0.0715	0	$\mu_{1} 0$							
$b_{2} 2 \cdot 294$	-0.0715	0.9974	0	$\mu_{2} 0$	$+56.3$						
$b_{3} 1 \cdot 470$	0	0	1	$\mu_{3} 0$							

1,4-dimethoxynaphthalene, although large, is less than the calculated value for the planar cis-structure. By supposing that the $\mathrm{C}-\mathrm{O}-\mathrm{Me}$ triangles are oppositely rotated out of the planar cis-positions, or that the planar cis-form is admixed with the orthogonal trans-form, the calculated ${ }_{\mathrm{m}} K$ values and those observed can be brought together, but then the μ calc. becomes incorrect. We note that if the plane containing both cis-methoxyl groups is rotated, about the $\mathrm{O} \cdots \mathrm{O}$ line, above or below the $X Y$ plane in (I), numerically satisfactory values of ${ }_{\mathrm{m}} K$ can be achieved and a $\mu_{\text {resultant }}$ of 2.07 D can be retained. The conformation listed as B in Table 3 has this plane rotated by 30°; other calculations (not
${ }^{11}$ Aroney, Le Fèvre, and Chang, $J ., 1960,3173$.
7 E
reproduced) show that for every 10° of such rotation in the $\pm 30^{\circ}$ range the ${ }_{\mathrm{m}} K$ calc. changes by $c a .70 \times 10^{-12}$; accordingly, the mean ${ }_{\mathrm{m}} K$ expected if the solute were a mixture of all forms with planes between $\pm 30^{\circ}$ would be $+286 \times 10^{-12}$, which approaches the measured value of $+298 \times 10^{-12}$.

For 9,10-dimethoxyanthracene as a $1: 1$ mixture of orthogonal cis- and trans-forms, a molar Kerr constant of -261×10^{-12} and a dipole moment of 1.46 D are deducible from Table 3. Since rigidity in such isomers is unlikely, computations have also been made for structures generated from these extremes by rotating the $\mathrm{C}-\mathrm{O}-\mathrm{Me}$ triangles about their $\mathrm{C}-\mathrm{O}$ bonds. The four examples quoted ($\mathrm{C}-\mathrm{F}$ in Table 3) involve 20° rotations, forms C and E being from the cis- and D and. F from the trans-orthogonal precursor; analogous calculations for rotations of 30° give ${ }_{\mathrm{m}} K$ values of $-311,+181,-481$, and +325 (all $\times 10^{-12}$) for the structures corresponding to $\mathrm{C}, \mathrm{D}, \mathrm{E}$, and F . Leybold models suggest that sterically unhindered oscillations of the methoxyls about their orthogonal dispositions are possible within limits of roughly $\pm 30^{\circ}$, so that molar Kerr constants and moments of the cis- and trans-species could credibly be about $-600 \times 10^{-12}, 2 \mathrm{D},+200 \times 10^{-12}$, and 0.7 D, respectively; a $1: 1$ mixture (as diagnosed by Everard and Sutton) should therefore exhibit an observed moment of $c a .1 \cdot 5 \mathrm{D}$ and an $\mathrm{m}_{\mathrm{m}} K$ of $c a .-200 \times 10^{-12}$.

We acknowledge with gratitude financial assistance to K. M. S. S. from the N.S.W. State Cancer Council, and the award of a University Research Studentship to A. S.

[^0]: ${ }^{1}$ Le Fèvre, Sundaram, and Pierens, J., 1963, 479.
 ${ }^{2}$ Le Fèvre and Le Fèvre, J., 1955, 1641.
 ${ }^{3}$ Le Fèvre and Sundaram, preceding paper.
 ${ }^{4}$ Le Fèvre and Le Fèvre, Rev. Pure Appl. Chem., 1955, 5, 261; "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., Inc., New York, London, 3rd edn., 1960, Vol. I, p. 2459.
 ${ }^{5}$ Baker and Carlson, J. Amer. Chem. Soc., 1942, 64, 2657, 2662.
 ${ }^{6}$ Naylor and Gardner, J. Amer. Chem. Soc., 1931, 53, 4109.
 7 Everard and Sutton, (a) J., 1951, 16; (b) J., 1949, 2312.
 ${ }^{8}$ Meyer, Annalen, 1911, 379, 70.
 ${ }^{9}$ Barnett, Cook, and Matthews, $J ., 1923,123,1994$.

